師資
2007年本科畢業(yè)于北京大學(xué),獲地球物理學(xué)學(xué)士學(xué)位以及數(shù)學(xué)與應(yīng)用數(shù)學(xué)雙學(xué)位。2013年于美國南加州大學(xué)(USC)獲地質(zhì)學(xué)博士學(xué)位。2013年至2019年以Research Fellow身份在日本防災(zāi)科學(xué)技術(shù)研究所(NIED)從事研究工作。2019年9月正式加入南方科技大學(xué)地球與空間科學(xué)系。以第一作者或共同作者在國際知名期刊諸如Nature Geoscience, Nature, Nature Communications等上共發(fā)表論文34篇,多次為國際知名期刊和美國自然科學(xué)基金委擔(dān)任同行評審。2017年獲日本地震學(xué)會青年科學(xué)家獎,2022年獲中國地球物理學(xué)會傅承義青年科技獎,2024年獲日本地震學(xué)會技術(shù)開發(fā)獎。
教育經(jīng)歷
2007 - 2013: 博士,美國南加州大學(xué),地球科學(xué)系,導(dǎo)師:Yehuda Ben-Zion
2003 - 2007: 學(xué)士,北京大學(xué),地球與空間科學(xué)學(xué)院
學(xué)士雙學(xué)位 (數(shù)學(xué)與應(yīng)用數(shù)學(xué)),北京大學(xué),數(shù)學(xué)科學(xué)學(xué)院
工作經(jīng)歷
2025 - 至今:副教授,南方科技大學(xué),地球與空間科學(xué)系
2019 - 2025:助理教授,南方科技大學(xué),地球與空間科學(xué)系
2013 - 2019:Research Fellow,日本防災(zāi)科學(xué)技術(shù)研究所,地震海嘯防災(zāi)研究部門,導(dǎo)師:Eiichi Fukuyama
教學(xué)經(jīng)歷
2007 - 2013: 助教,美國南加州大學(xué),地球科學(xué)系
獲獎經(jīng)歷
2025:Wiley威立中國高貢獻(xiàn)作者獎(2024年第四季度)
2024:日本地震學(xué)會技術(shù)開發(fā)獎
2024:AGU旗下期刊Journal of Geophysical Research: Solid Earth優(yōu)秀審稿人(2023年度)
2023:AGU旗下期刊Geophysical Research Letters優(yōu)秀審稿人(2022年度)
2022:中國地球物理學(xué)會傅承義青年科技獎
2021:AGU旗下期刊Journal of Geophysical Research: Solid Earth優(yōu)秀審稿人(2020年度)
2020:AGU旗下期刊Journal of Geophysical Research: Solid Earth優(yōu)秀審稿人(2019年度)
2019:AGU旗下期刊Journal of Geophysical Research: Solid Earth優(yōu)秀審稿人(2018年度)
2019: 日本防災(zāi)科學(xué)技術(shù)研究所成就獎(2018年度)
2018: 日本地震學(xué)會青年科學(xué)家獎(2017年度)
2006: 中國科學(xué)院地球物理專業(yè)獎學(xué)金,二等獎
2004: 北京大學(xué)學(xué)習(xí)優(yōu)秀獎
2003: 國家獎學(xué)金
學(xué)術(shù)服務(wù)
編輯:Geophysical Journal International (GJI) (2023 - 至今)
客座編輯:Tectonophysics (2017 - 2018)
審稿人: Nature Geoscience; Nature Communications; Science Advances; AGU Geophysical Monograph Series; JGR-Solid Earth; GRL; Gcubed; EPSL; Tectonophysics; JSG; BSSA; TSR; SRL; EPS; GJI; PAGEOPH 等
研究領(lǐng)域
? 地震破裂傳播的理論模型和數(shù)值模擬
? 損傷力學(xué)和斷裂力學(xué)
? 巖石摩擦實驗
? 斷層演化
? 常規(guī)地震和慢地震
? 俯沖帶地震
? 地震物理學(xué)
已提交論文
[S4] Ding, X., S. Xu, and L. Ye, Intermittent supershear rupture punctuated by barrier-induced stopping phase during the 2025 Mw 7.8 Myanmar earthquake: Evidence from near-fault strong motion observation, submitted to Geophysical Research Letters, 2025.
[S3] Zheng, F., J. Gao, Z. Liu, H. Meng, Y. Hou, L. Wang, S. Xu, Z. Peng, C. Wang, M Zhou, H. Yue, J. Sun, Z. Wang, Y. Ben-Zion, Rich Rupture Dynamics of the 2025 Mw?7.7 Mandalay Earthquake Revealed by Unprecedented Near-Fault and High-Resolution Observations, submitted, 2025.
[S2] Xu, S., Energy-based opinion on the correlation between stress drop and rupture speed, submitted to Seismica, 2025.
[S1] Fukuyama, E., F. Yamashita, S. Xu, K. Mizoguchi, H. Kawakata, K. Okubo, and S. Maeda, Development of large-scale friction apparatuses and their contributions to earthquake source physics, submitted to Zisin, 2025.
同行評審論文
[34] Xia, T., L. Ye, Y. Bai, T. Lay, S. Xu, H. Kanamori, L. Rivera, and S. P. D. Sriyanto (2024), The 2022 Mw 7.3 Southern Sumatra Tsunami Earthquake: Rupture Up-dip of the 2007 Mw 8.4 Bengkulu Event, Journal of Geophysical Research: Solid Earth, 129(12), e2024JB030284, doi:10.1029/2024JB030284.
[33] Gong, W., L. Ye, S. Xu, Y. Tan, and X. Chen (2024), Rupture Behaviors of the Southern Xianshuihe Fault and Seismicity around Mt. Gongga: Insights from the 2022 Mw 6.6 Luding (China) Earthquake Sequence, Tectonophysics, 892, 230538, doi:10.1016/j.tecto.2024.230538.
[32] Ding, X., S. Xu, E. Fukuyama, and F. Yamashita (2024), Back-Propagating Rupture: Nature, Excitation, and Implications, Journal of Geophysical Research: Solid Earth, 129(10), e2024JB029629, doi:10.1029/2024JB029629.
[31] Wang, L., S. Xu, Y. Zhuo, P. Liu, and S. Ma (2024), Unraveling the roles of fault asperities over earthquake cycles, Earth and Planetary Science Letters, 636, 118711, doi:10.1016/j.epsl.2024.118711.
[30] Wang, Q., Y. Zhang, L. Wang, P. Yu, S. Guerin-Marthe, X. Peng, S. Xu, P. Martínez-Garzón, and M. Bohnhoff (2024), Evolution of shear rupture along a prescribed interface using the Discontinuous Deformation Analysis method, Rock Mechanics and Rock Engineering, 57, 7715–7726, doi:10.1007/s00603-024-03897-4.
[29] Liu-Zeng, J., Z. Liu, X. Liu, C. Milliner, A. Rodriguez Padilla, S. Xu, J.-P. Avouac, W. Yao, Y. Klinger, L. Han, Y. Shao, X. Yan, S. Aati, and Z. Shao (2024), Fault orientation trumps fault maturity in controlling coseismic rupture characteristics of the 2021 Maduo earthquake, AGU Advances, 5(2), e2023AV001134, doi:10.1029/2023AV001134.
[28] Wan, Z., R. Dong, D. Wang, S. Xu, Z. Wang, and Q. Wang (2024), Along-strike Variation of Rupture Characteristics and Aftershock Patterns of the 2023 Mw 7.8 Türkiye Earthquake Controlled by Fault Structure, Seismological Research Letters, 95(4), 2071–2080, doi:10.1785/0220230378.
[27] Lu, R., Y. Gao, Y. Hu, X. Lai, H. Li, J. Lu, L. Shao, P. Wang, W. Wang, W. Wang, C. Xia, H. Xu, R. Xu, S. Xu, H. Yue, L. Zhao, X. Zheng, E. Zhou, and Y. Zou (2024), Quakes: from the Earth to Stars, Scientia Sinica Physica, Mechanica & Astronomica, 54(8), 289501, doi:10.1360/SSPMA-2023-0424. [路瑞鵬, 高勇, 胡巖, 來小禹, 李洪波, 盧吉光, 邵立晶, 王平, 汪衛(wèi)華, 王維揚(yáng), 夏鋮君, 胥恒, 徐仁新, 徐世慶, 岳漢, 趙里, 鄭小平, 周恩平, 鄒遠(yuǎn)川. 從地震到星震. 中國科學(xué): 物理學(xué) 力學(xué) 天文學(xué), 2024: 54(8), 289501]
[26] Ding, X., J. Xie, and S. Xu (2024), Dynamic activation of near-orthogonal conjugate faults during earthquakes: Insights from the 2023 Tu?rkiye Mw 7.6 earthquake, Chinese Science Bulletin, 69(11), 1501–1516, doi:10.1360/TB-2023-0894. [丁嘯天, 謝軍, 徐世慶. 近垂直共軛斷層在地震中的動態(tài)激活: 來自2023年土耳其Mw 7.6地震的啟示. 科學(xué)通報, 2024: 69(11), 1501–1516]
[25] Ding, X., S. Xu, Y. Xie, M. van den Ende, J. Premus, and J.-P. Ampuero (2023), The sharp turn: Backward rupture branching during the 2023 Mw 7.8 Kahramanmara? (Türkiye) earthquake, Seismica, 2(3), doi:10.26443/seismica.v2i3.1083. Preprint link: https://arxiv.org/abs/2307.06051
[24] Cheng, C., D. Wang, Q. Yao, L. Fang, S. Xu, Z. Huang, T. Liu, Z. Wang, and X. Huang (2023), The 2021 Mw 7.3 Madoi, China earthquake: Transient supershear ruptures on a presumed immature strike-slip fault, Journal of Geophysical Research: Solid Earth, Special Issue "100-Year Anniversary of the Great 1920 Haiyuan Earthquake: What Have We Learned on Large Continental Earthquakes and Faults?", 128, e2022JB024641, doi:10.1029/2022JB024641.
[23] Xu, S., E. Fukuyama, F. Yamashita, H. Kawakata, K. Mizoguchi, and S. Takizawa (2023), Fault strength and rupture process controlled by fault surface topography, Nature Geoscience, 16, 94–100, doi:10.1038/s41561-022-01093-z.
[22] Yamashita, F., E. Fukuyama, and S. Xu (2022), Foreshock activity promoted by locally elevated loading rate on a 4-meter-long laboratory fault, Journal of Geophysical Research: Solid Earth, 127(3), e2021JB023336, doi:10.1029/2021JB023336.
[21] Yoshida, K., N. Uchida, H. Kubo, R. Takagi, and S. Xu (2022), Prevalence of updip rupture propagation in interplate earthquakes along the Japan Trench, Earth and Planetary Science Letters, 578, 117306, doi:10.1016/j.epsl.2021.117306.
[20] Yamashita, F., E. Fukuyama, S. Xu, H. Kawakata, K. Mizoguchi, and S. Takizawa (2021), Two end-member earthquake preparations illuminated by foreshock activity on a meter-scale laboratory fault, Nature Communications, 12, 4302, doi:10.1038/s41467-021-24625-4.
[19] Xu, S. (2020), Recognizing fracture pattern signatures contributed by seismic loadings, Interpretation, Special Issue "Seismic interpretation of fractures in deep subsurface", 8(4), SP95–SP108, doi:10.1190/int-2020-0033.1. Preprint link: https://eartharxiv.org/repository/view/308/
[18] Xu, S., E. Fukuyama, F. Yamashita, and S. Takizawa (2019), Evolution of Fault-Interface Rayleigh Wave speed over simulated earthquake cycles in the lab: Observations, interpretations, and implications, Earth and Planetary Science Letters, 524, 115720, doi:10.1016/j.epsl.2019.115720.
[17] Xu, S. (2019), Probing earthquake physics using multidisciplinary approaches, Zisin, 72(2), 17–34, doi:10.4294/zisin.2018-12.
[16] Xu, S., E. Fukuyama, and F. Yamashita (2019), Robust estimation of rupture properties at propagating front of laboratory earthquakes, Journal of Geophysical Research: Solid Earth, 124(1), 766–787, doi:10.1029/2018JB016797.
[15] Xu, S., E. Fukuyama, A. Sagy, and M.-L. Doan (2018), Preface: Physics of Earthquake Rupture Propagation, Tectonophysics, Special Issue "Physics of Earthquake Rupture Propagation", 733, 1–3, doi:10.1016/j.tecto.2018.04.013.
[14] Yamashita, F., E. Fukuyama, S. Xu, K. Mizoguchi, H. Kawakata, and S. Takizawa (2018), Rupture preparation process controlled by surface roughness on meter-scale laboratory fault, Tectonophysics, Special Issue "Physics of Earthquake Rupture Propagation", 733, 193–208, doi:10.1016/j.tecto.2018.01.034.
[13] Fukuyama, E., K. Tsuchida, H. Kawakata, F. Yamashita, K. Mizoguchi, and S. Xu (2018), Spatiotemporal complexity of 2-D rupture nucleation process observed by direct monitoring during large-scale biaxial rock friction experiments, Tectonophysics, Special Issue "Physics of Earthquake Rupture Propagation", 733, 182–192, doi:10.1016/j.tecto.2017.12.023.
[12] Xu, S., E. Fukuyama, F. Yamashita, K. Mizoguchi, S. Takizawa, and H. Kawakata (2018), Strain rate effect on fault slip and rupture evolution: Insight from meter-scale rock friction experiments, Tectonophysics, Special Issue "Physics of Earthquake Rupture Propagation", 733, 209-231, doi:10.1016/j.tecto.2017.11.039.
[11] Aldam, M., S. Xu, E.A. Brener, Y. Ben-Zion, and E. Bouchbinder (2018), Non-monotonicity of the frictional bimaterial effect, Journal of Geophysical Research: Solid Earth, 122(10), 8270–8284, doi:10.1002/2017JB014665.
[10] Xu, S., and Y. Ben-Zion (2017), Theoretical constraints on dynamic pulverization of fault zone rocks, Geophysical Journal International, 209(1), 282–296, doi:10.1093/gji/ggx033.
[9] Xu, S., E. Fukuyama, H. Yue, and J.-P. Ampuero (2016), Simple crack models explain deformation induced by subduction zone megathrust earthquakes, Bulletin of the Seismological Society of America, 106(5), 2275–2289, doi:10.1785/0120160079.
[8] Fukuyama, E., S. Xu, F. Yamashita, and K. Mizoguchi (2016), Cohesive zone length of metagabbro at supershear rupture velocity, Journal of Seismology, Special Issue "Imaging Earthquakes and Earth Structure Through Waves" Honoring Professor Raul Madariaga, 20(4), 1207–1215, doi:10.1007/s10950-016-9588-2.
[7] Yamashita, F., E. Fukuyama, K. Mizoguchi, S. Takizawa, S. Xu, and H. Kawakata (2015), Scale dependence of rock friction at high work rate, Nature, 528, 254–257, doi:10.1038/nature16138.
[6] Xu, S., E. Fukuyama, Y. Ben-Zion, and J.-P. Ampuero (2015), Dynamic rupture activation of backthrust fault branching, Tectonophysics, 644–645, 161–183, doi: 10.1016/j.tecto.2015.01.011.
[5] Xu, S., Y. Ben-Zion, J.-P. Ampuero, and V. Lyakhovsky (2015), Dynamic ruptures on a frictional interface with off-fault brittle damage: Feedback mechanisms and effects on slip and near-fault motion, Pure and Applied Geophysics, 172, 1243–1267, doi: 10.1007/s00024-014-0923-7.
[4] Xu, S., and Y. Ben-Zion (2013), Numerical and theoretical analyses of in-plane dynamic rupture on a frictional interface and off-fault yielding patterns at different scales, Geophysical Journal International, 193, 304–320, doi: 10.1093/gji/ggs105.
[3] Xu, S., Y. Ben-Zion, and J.-P. Ampuero (2012b), Properties of inelastic yielding zones generated by in-plane dynamic ruptures: II. Detailed parameter-space study, Geophysical Journal International, 191, 1343–1360, doi: 10.1111/j.1365-246X.2012.05685.x.
[2] Xu, S., Y. Ben-Zion, and J.-P. Ampuero (2012a), Properties of inelastic yielding zones generated by in-plane dynamic ruptures: I. Model description and basic results, Geophysical Journal International, 191, 1325-1342, doi: 10.1111/j.1365-246X.2012.05679.x.
[1] Ben-Zion, Y., T. Rockwell, Z. Shi, and S. Xu (2012), Reversed-polarity secondary deformation structures near fault stepovers, Journal of Applied Mechanics, Special Issue Honoring Professor James R. Rice, 79(3), 031025, doi:10.1115/1.4006154.
